You're at the mercy of Google Bot's crawling decisions, with limited control over what gets crawled, when, and how. This lack of control prevents advanced SEO testing, personalized bot experiences, and precise crawl budget allocation. Cloudflare Workers provide unprecedented control over bot traffic, but most SEOs don't leverage this power. The solution is implementing sophisticated bot management strategies that transform Google Bot from an unknown variable into a controlled optimization tool.
Traditional bot management is reactive—you set rules in robots.txt and hope Google Bot follows them. Cloudflare Workers enable proactive bot management where you can intercept, analyze, and manipulate bot traffic in real-time. This creates a new architecture: Bot Control Layer at the Edge.
The architecture consists of three components: Bot Detection (identifying and classifying bots), Bot Decision Engine (applying rules based on bot type and behavior), and Bot Response Manipulation (serving optimized content, controlling crawl rates, or blocking unwanted behavior). This layer sits between Google Bot and your Jekyll site, giving you complete control without modifying your static site structure.
| Component | Technology | Function | SEO Benefit |
|---|---|---|---|
| Bot Detector | Cloudflare Workers + ML | Identify and classify bots | Precise bot-specific handling |
| Decision Engine | Rules Engine + Analytics | Apply SEO rules to bots | Automated SEO optimization |
| Content Manipulator | HTMLRewriter API | Modify responses for bots | Bot-specific content delivery |
| Traffic Shaper | Rate Limiting + Queue | Control bot crawl rates | Optimal crawl budget use |
| Experiment Manager | A/B Testing Framework | Test SEO changes on bots | Data-driven SEO decisions |
Go beyond simple user agent matching:
// Advanced bot detection with behavioral analysis
class BotDetector {
constructor() {
this.botPatterns = this.loadBotPatterns()
this.botBehaviorProfiles = this.loadBehaviorProfiles()
}
async detectBot(request, response) {
const detection = {
isBot: false,
botType: null,
confidence: 0,
behaviorProfile: null
}
// Method 1: User Agent Analysis
const uaDetection = this.analyzeUserAgent(request.headers.get('User-Agent'))
detection.confidence += uaDetection.confidence * 0.4
// Method 2: IP Analysis
const ipDetection = await this.analyzeIP(request.headers.get('CF-Connecting-IP'))
detection.confidence += ipDetection.confidence * 0.3
// Method 3: Behavioral Analysis
const behaviorDetection = await this.analyzeBehavior(request, response)
detection.confidence += behaviorDetection.confidence * 0.3
// Method 4: Header Analysis
const headerDetection = this.analyzeHeaders(request.headers)
detection.confidence += headerDetection.confidence * 0.2
// Combine detections
if (detection.confidence >= 0.7) {
detection.isBot = true
detection.botType = this.determineBotType(uaDetection, behaviorDetection)
detection.behaviorProfile = this.getBehaviorProfile(detection.botType)
}
return detection
}
analyzeUserAgent(userAgent) {
const patterns = {
googlebot: /Googlebot/i,
googlebotSmartphone: /Googlebot.*Smartphone|iPhone.*Googlebot/i,
googlebotImage: /Googlebot-Image/i,
googlebotVideo: /Googlebot-Video/i,
bingbot: /Bingbot/i,
yahoo: /Slurp/i,
baidu: /Baiduspider/i,
yandex: /YandexBot/i,
facebook: /facebookexternalhit/i,
twitter: /Twitterbot/i,
linkedin: /LinkedInBot/i
}
for (const [type, pattern] of Object.entries(patterns)) {
if (pattern.test(userAgent)) {
return {
botType: type,
confidence: 0.9,
rawMatch: userAgent.match(pattern)[0]
}
}
}
// Check for generic bot patterns
const genericBotPatterns = [
/bot/i, /crawler/i, /spider/i, /scraper/i,
/curl/i, /wget/i, /python/i, /java/i
]
if (genericBotPatterns.some(p => p.test(userAgent))) {
return {
botType: 'generic_bot',
confidence: 0.6,
warning: 'Generic bot detected'
}
}
return { botType: null, confidence: 0 }
}
async analyzeIP(ip) {
// Check if IP is from known search engine ranges
const knownRanges = await this.fetchKnownBotIPRanges()
for (const range of knownRanges) {
if (this.isIPInRange(ip, range)) {
return {
confidence: 0.95,
range: range.name,
provider: range.provider
}
}
}
// Check IP reputation
const reputation = await this.checkIPReputation(ip)
return {
confidence: reputation.score > 80 ? 0.8 : 0.3,
reputation: reputation
}
}
analyzeBehavior(request, response) {
const behavior = {
requestRate: this.calculateRequestRate(request),
crawlPattern: this.analyzeCrawlPattern(request),
resourceConsumption: this.analyzeResourceConsumption(response),
timingPatterns: this.analyzeTimingPatterns(request)
}
let confidence = 0
// Bot-like behaviors
if (behavior.requestRate > 10) confidence += 0.3 // High request rate
if (behavior.crawlPattern === 'systematic') confidence += 0.3
if (behavior.resourceConsumption.low) confidence += 0.2 // Bots don't execute JS
if (behavior.timingPatterns.consistent) confidence += 0.2
return {
confidence: Math.min(confidence, 1),
behavior: behavior
}
}
analyzeHeaders(headers) {
const botHeaders = {
'Accept': /text\/html.*application\/xhtml\+xml.*application\/xml/i,
'Accept-Language': /en-US,en/i,
'Accept-Encoding': /gzip, deflate/i,
'Connection': /keep-alive/i
}
let matches = 0
let total = Object.keys(botHeaders).length
for (const [header, pattern] of Object.entries(botHeaders)) {
const value = headers.get(header)
if (value && pattern.test(value)) {
matches++
}
}
return {
confidence: matches / total,
matches: matches,
total: total
}
}
}
Implement granular crawl control:
// Dynamic crawl budget manager
class CrawlBudgetManager {
constructor() {
this.budgets = new Map()
this.crawlLog = []
}
async manageCrawl(request, detection) {
const url = new URL(request.url)
const botType = detection.botType
// Get or create budget for this bot type
let budget = this.budgets.get(botType)
if (!budget) {
budget = this.createBudgetForBot(botType)
this.budgets.set(botType, budget)
}
// Check if crawl is allowed
const crawlDecision = this.evaluateCrawl(url, budget, detection)
if (!crawlDecision.allow) {
return {
action: 'block',
reason: crawlDecision.reason,
retryAfter: crawlDecision.retryAfter
}
}
// Update budget
budget.used += 1
this.logCrawl(url, botType, detection)
// Apply crawl delay if needed
const delay = this.calculateOptimalDelay(url, budget, detection)
return {
action: 'allow',
delay: delay,
budgetRemaining: budget.total - budget.used
}
}
createBudgetForBot(botType) {
const baseBudgets = {
googlebot: { total: 1000, period: 'daily', priority: 'high' },
googlebotSmartphone: { total: 1500, period: 'daily', priority: 'critical' },
googlebotImage: { total: 500, period: 'daily', priority: 'medium' },
bingbot: { total: 300, period: 'daily', priority: 'medium' },
generic_bot: { total: 100, period: 'daily', priority: 'low' }
}
const config = baseBudgets[botType] || { total: 50, period: 'daily', priority: 'low' }
return {
...config,
used: 0,
resetAt: this.calculateResetTime(config.period),
history: []
}
}
evaluateCrawl(url, budget, detection) {
// Rule 1: Budget exhaustion
if (budget.used >= budget.total) {
return {
allow: false,
reason: 'Daily crawl budget exhausted',
retryAfter: this.secondsUntilReset(budget.resetAt)
}
}
// Rule 2: Low priority URLs for high-value bots
if (budget.priority === 'high' && this.isLowPriorityURL(url)) {
return {
allow: false,
reason: 'Low priority URL for high-value bot',
retryAfter: 3600 // 1 hour
}
}
// Rule 3: Recent crawl (avoid duplicate crawls)
const lastCrawl = this.getLastCrawlTime(url, detection.botType)
if (lastCrawl && Date.now() - lastCrawl < this.getMinCrawlInterval(url)) {
return {
allow: false,
reason: 'Crawled too recently',
retryAfter: this.getMinCrawlInterval(url) / 1000
}
}
return { allow: true }
}
calculateOptimalDelay(url, budget, detection) {
let baseDelay = 1000 // 1 second default
// Adjust based on bot type
switch(detection.botType) {
case 'googlebotSmartphone':
baseDelay = 500 // Faster for mobile bot
break
case 'googlebot':
baseDelay = 1000
break
case 'generic_bot':
baseDelay = 3000 // Slower for generic bots
break
}
// Adjust based on URL importance
if (this.isHighPriorityURL(url)) {
baseDelay *= 0.5 // Faster for important pages
} else if (this.isLowPriorityURL(url)) {
baseDelay *= 2 // Slower for low priority pages
}
// Adjust based on budget usage
const usageRatio = budget.used / budget.total
if (usageRatio > 0.8) {
baseDelay *= 1.5 // Slow down near budget limit
}
return Math.round(baseDelay)
}
}
// URL priority classifier for crawl control
class URLPriorityClassifier {
constructor(analyticsData) {
this.analytics = analyticsData
this.priorityCache = new Map()
}
classifyURL(url) {
if (this.priorityCache.has(url)) {
return this.priorityCache.get(url)
}
let score = 0
const factors = []
// Factor 1: Page authority (traffic)
const traffic = this.analytics.trafficByURL[url] || 0
if (traffic > 1000) score += 30
else if (traffic > 100) score += 20
else if (traffic > 10) score += 10
factors.push(`traffic:${traffic}`)
// Factor 2: Content freshness
const freshness = this.getContentFreshness(url)
if (freshness === 'fresh') score += 25
else if (freshness === 'updated') score += 15
else if (freshness === 'stale') score += 5
factors.push(`freshness:${freshness}`)
// Factor 3: Conversion value
const conversionRate = this.getConversionRate(url)
score += conversionRate * 20
factors.push(`conversion:${conversionRate}`)
// Factor 4: Structural importance
if (url === '/') score += 25
else if (url.includes('/blog/')) score += 15
else if (url.includes('/product/')) score += 20
else if (url.includes('/category/')) score += 5
factors.push(`structure:${url.split('/')[1]}`)
// Factor 5: External signals
const backlinks = this.getBacklinkCount(url)
score += Math.min(backlinks / 10, 10) // Max 10 points
factors.push(`backlinks:${backlinks}`)
// Normalize score and assign priority
const normalizedScore = Math.min(score, 100)
let priority
if (normalizedScore >= 70) priority = 'critical'
else if (normalizedScore >= 50) priority = 'high'
else if (normalizedScore >= 30) priority = 'medium'
else if (normalizedScore >= 10) priority = 'low'
else priority = 'very_low'
const classification = {
score: normalizedScore,
priority: priority,
factors: factors,
crawlFrequency: this.recommendCrawlFrequency(priority)
}
this.priorityCache.set(url, classification)
return classification
}
recommendCrawlFrequency(priority) {
const frequencies = {
critical: 'hourly',
high: 'daily',
medium: 'weekly',
low: 'monthly',
very_low: 'quarterly'
}
return frequencies[priority]
}
generateCrawlSchedule() {
const urls = Object.keys(this.analytics.trafficByURL)
const classified = urls.map(url => this.classifyURL(url))
const schedule = {
hourly: classified.filter(c => c.priority === 'critical').map(c => c.url),
daily: classified.filter(c => c.priority === 'high').map(c => c.url),
weekly: classified.filter(c => c.priority === 'medium').map(c => c.url),
monthly: classified.filter(c => c.priority === 'low').map(c => c.url),
quarterly: classified.filter(c => c.priority === 'very_low').map(c => c.url)
}
return schedule
}
}
Serve different content to Google Bot for testing:
// Dynamic rendering engine for SEO experiments
class DynamicRenderer {
constructor() {
this.experiments = new Map()
this.renderCache = new Map()
}
async renderForBot(request, originalResponse, detection) {
const url = new URL(request.url)
const cacheKey = `${url.pathname}-${detection.botType}`
// Check cache
if (this.renderCache.has(cacheKey)) {
const cached = this.renderCache.get(cacheKey)
if (Date.now() - cached.timestamp < 300000) { // 5 minute cache
return cached.response
}
}
// Check for active experiments
const experiment = this.getActiveExperiment(url, detection.botType)
let renderedHTML
if (experiment) {
// Apply experiment variant
renderedHTML = await this.applyExperimentVariant(
originalResponse,
experiment
)
} else {
// Apply standard bot optimizations
renderedHTML = await this.applyStandardOptimizations(
originalResponse,
detection
)
}
// Apply bot-specific enhancements
renderedHTML = this.enhanceForBot(renderedHTML, detection)
// Create response
const response = new Response(renderedHTML, originalResponse)
// Add bot rendering headers
response.headers.set('X-Bot-Rendered', 'true')
response.headers.set('X-Bot-Type', detection.botType)
if (experiment) {
response.headers.set('X-Experiment-ID', experiment.id)
response.headers.set('X-Experiment-Variant', experiment.variant)
}
// Cache the response
this.renderCache.set(cacheKey, {
response: response,
timestamp: Date.now()
})
return response
}
async applyStandardOptimizations(response, detection) {
let html = await response.text()
// Different optimizations for different bot types
switch(detection.botType) {
case 'googlebotSmartphone':
html = this.optimizeForMobileBot(html)
break
case 'googlebotImage':
html = this.optimizeForImageBot(html)
break
case 'googlebot':
html = this.optimizeForDesktopBot(html)
break
}
// Common optimizations for all bots
html = this.injectStructuredData(html)
html = this.optimizeInternalLinking(html)
html = this.addBotHelpfulMeta(html)
return html
}
async applyExperimentVariant(response, experiment) {
let html = await response.text()
switch(experiment.type) {
case 'title_optimization':
html = this.experimentWithTitles(html, experiment.variant)
break
case 'meta_description':
html = this.experimentWithDescriptions(html, experiment.variant)
break
case 'internal_linking':
html = this.experimentWithInternalLinks(html, experiment.variant)
break
case 'content_length':
html = this.experimentWithContentLength(html, experiment.variant)
break
case 'schema_markup':
html = this.experimentWithSchema(html, experiment.variant)
break
}
// Track experiment impression
this.trackExperimentImpression(experiment.id, experiment.variant)
return html
}
experimentWithTitles(html, variant) {
const titleMatch = html.match(/title(.*?)\/title/i)
if (!titleMatch) return html
const originalTitle = titleMatch[1]
let newTitle
switch(variant) {
case 'add_keyword_front':
newTitle = `Best Guide: ${originalTitle}`
break
case 'add_year':
newTitle = `${originalTitle} (2024 Edition)`
break
case 'add_brackets':
newTitle = `${originalTitle} [Complete Guide]`
break
default:
newTitle = originalTitle
}
return html.replace(/title(.*?)\/title/i, `<title>${newTitle}</title>`)
}
enhanceForBot(html, detection) {
// Add bot-specific enhancements
// 1. Inject crawl hints
const crawlHints = this.generateCrawlHints(detection.botType)
html = html.replace('</head>', `${crawlHints}</head>`)
// 2. Add bot-readable metadata
const botMeta = this.generateBotMeta(detection)
html = html.replace('</head>', `${botMeta}</head>`)
// 3. Optimize for bot rendering
if (detection.botType === 'googlebotSmartphone') {
html = this.addMobileBotEnhancements(html)
}
return html
}
generateCrawlHints(botType) {
const hints = []
// Add resource hints for faster crawling
hints.push('<link rel="preconnect" href="https://fonts.googleapis.com">')
hints.push('<link rel="dns-prefetch" href="//cdn.yoursite.com">')
// Bot-specific hints
if (botType === 'googlebotSmartphone') {
hints.push('<meta name="googlebot" content="max-image-preview:large">')
}
return hints.join('\n')
}
}
Shape bot traffic flow intelligently:
// Bot traffic shaper and prioritization engine
class BotTrafficShaper {
constructor() {
this.queues = new Map()
this.priorityRules = this.loadPriorityRules()
this.trafficHistory = []
}
async shapeTraffic(request, detection) {
const url = new URL(request.url)
// Determine priority
const priority = this.calculatePriority(url, detection)
// Check rate limits
if (!this.checkRateLimits(detection.botType, priority)) {
return this.handleRateLimitExceeded(detection)
}
// Queue management for high traffic periods
if (this.isPeakTrafficPeriod()) {
return this.handleWithQueue(request, detection, priority)
}
// Apply priority-based delays
const delay = this.calculatePriorityDelay(priority)
if (delay > 0) {
await this.delay(delay)
}
// Process request
return this.processRequest(request, detection)
}
calculatePriority(url, detection) {
let score = 0
// Bot type priority
const botPriority = {
googlebotSmartphone: 100,
googlebot: 90,
googlebotImage: 80,
bingbot: 70,
googlebotVideo: 60,
generic_bot: 10
}
score += botPriority[detection.botType] || 0
// URL priority
if (url.pathname === '/') score += 50
else if (url.pathname.includes('/blog/')) score += 40
else if (url.pathname.includes('/product/')) score += 45
else if (url.pathname.includes('/category/')) score += 20
// Content freshness priority
const freshness = this.getContentFreshness(url)
if (freshness === 'fresh') score += 30
else if (freshness === 'updated') score += 20
// Convert score to priority level
if (score >= 120) return 'critical'
else if (score >= 90) return 'high'
else if (score >= 60) return 'medium'
else if (score >= 30) return 'low'
else return 'very_low'
}
checkRateLimits(botType, priority) {
const limits = {
critical: { requests: 100, period: 60 }, // per minute
high: { requests: 50, period: 60 },
medium: { requests: 20, period: 60 },
low: { requests: 10, period: 60 },
very_low: { requests: 5, period: 60 }
}
const limit = limits[priority]
const key = `${botType}:${priority}`
// Get recent requests
const now = Date.now()
const recent = this.trafficHistory.filter(
entry => entry.key === key && now - entry.timestamp < limit.period * 1000
)
return recent.length < limit.requests
}
handleWithQueue(request, detection, priority) {
const queue = this.getQueue(priority)
const queueItem = {
request: request,
detection: detection,
timestamp: Date.now(),
priority: priority
}
// Add to queue
queue.push(queueItem)
// Process queue in priority order
return this.processQueue()
}
async processQueue() {
// Process queues in priority order
const priorities = ['critical', 'high', 'medium', 'low', 'very_low']
for (const priority of priorities) {
const queue = this.getQueue(priority)
if (queue.length > 0) {
const item = queue.shift() // FIFO within priority
// Check if still valid (not too old)
if (Date.now() - item.timestamp < 30000) { // 30 second timeout
return this.processRequest(item.request, item.detection)
}
}
}
// If all queues empty, fall through
return new Response('Queue processed', { status: 200 })
}
calculatePriorityDelay(priority) {
const delays = {
critical: 0, // No delay for critical
high: 100, // 100ms for high
medium: 500, // 500ms for medium
low: 1000, // 1 second for low
very_low: 3000 // 3 seconds for very low
}
return delays[priority] || 1000
}
async processRequest(request, detection) {
// Add bot processing headers
const response = await fetch(request)
const newResponse = new Response(response.body, response)
newResponse.headers.set('X-Bot-Processed', 'true')
newResponse.headers.set('X-Bot-Priority', detection.priority || 'medium')
newResponse.headers.set('X-Crawl-Delay', this.calculatePriorityDelay(detection.priority))
// Log the processing
this.logBotProcessing(request.url, detection)
return newResponse
}
}
Run controlled SEO experiments on Google Bot:
// SEO experiment framework for bot testing
class SEOExperimentFramework {
constructor() {
this.experiments = new Map()
this.results = new Map()
this.activeVariants = new Map()
}
createExperiment(config) {
const experiment = {
id: this.generateExperimentId(),
name: config.name,
type: config.type,
hypothesis: config.hypothesis,
variants: config.variants,
trafficAllocation: config.trafficAllocation || { control: 50, variant: 50 },
targetBots: config.targetBots || ['googlebot', 'googlebotSmartphone'],
startDate: new Date(),
endDate: config.duration ? new Date(Date.now() + config.duration * 86400000) : null,
status: 'active',
metrics: {}
}
this.experiments.set(experiment.id, experiment)
return experiment
}
assignVariant(experimentId, requestUrl, botType) {
const experiment = this.experiments.get(experimentId)
if (!experiment || experiment.status !== 'active') return null
// Check if bot is targeted
if (!experiment.targetBots.includes(botType)) return null
// Check if URL matches experiment criteria
if (!this.urlMatchesCriteria(requestUrl, experiment.criteria)) return null
// Assign variant based on traffic allocation
const variantKey = `${experimentId}:${requestUrl}`
if (this.activeVariants.has(variantKey)) {
return this.activeVariants.get(variantKey)
}
// Random assignment based on traffic allocation
const random = Math.random() * 100
let assignedVariant
if (random < experiment.trafficAllocation.control) {
assignedVariant = 'control'
} else if (random < experiment.trafficAllocation.control + experiment.trafficAllocation.variant) {
assignedVariant = 'variant_a'
} else if (experiment.variants.variant_b &&
random < experiment.trafficAllocation.control +
experiment.trafficAllocation.variant +
experiment.trafficAllocation.variant_b) {
assignedVariant = 'variant_b'
} else {
assignedVariant = 'control' // Fallback
}
this.activeVariants.set(variantKey, assignedVariant)
return assignedVariant
}
async trackResult(experimentId, variant, metric, value) {
const experiment = this.experiments.get(experimentId)
if (!experiment) return
// Initialize metric tracking
if (!experiment.metrics[metric]) {
experiment.metrics[metric] = {
control: { sum: 0, count: 0, values: [] },
variant_a: { sum: 0, count: 0, values: [] },
variant_b: { sum: 0, count: 0, values: [] }
}
}
// Update metric
const metricData = experiment.metrics[metric][variant]
metricData.sum += value
metricData.count += 1
metricData.values.push(value)
// Check for statistical significance
if (metricData.count >= experiment.minSampleSize) {
const significance = this.calculateStatisticalSignificance(experiment, metric)
if (significance.pValue < 0.05) { // 95% confidence
experiment.status = 'concluded'
experiment.conclusion = {
winner: significance.winner,
confidence: 1 - significance.pValue,
improvement: significance.improvement,
metric: metric
}
this.notifyExperimentConclusion(experiment)
}
}
}
calculateStatisticalSignificance(experiment, metric) {
const control = experiment.metrics[metric].control
const variant = experiment.metrics[metric].variant_a
// Simple t-test calculation
const controlMean = control.sum / control.count
const variantMean = variant.sum / variant.count
const controlVariance = this.calculateVariance(control.values, controlMean)
const variantVariance = this.calculateVariance(variant.values, variantMean)
const pooledVariance = (
(control.count - 1) * controlVariance +
(variant.count - 1) * variantVariance
) / (control.count + variant.count - 2)
const tStatistic = (variantMean - controlMean) /
Math.sqrt(pooledVariance * (1/control.count + 1/variant.count))
// Degrees of freedom
const df = control.count + variant.count - 2
// Calculate p-value (simplified)
const pValue = this.calculatePValue(tStatistic, df)
return {
pValue: pValue,
winner: variantMean > controlMean ? 'variant' : 'control',
improvement: ((variantMean - controlMean) / controlMean) * 100
}
}
// Example experiment configurations
static getPredefinedExperiments() {
return {
title_optimization: {
name: 'Title Tag Optimization',
type: 'title_optimization',
hypothesis: 'Adding [2024] to title increases CTR',
variants: {
control: 'Original title',
variant_a: 'Title with [2024]',
variant_b: 'Title with (Updated 2024)'
},
targetBots: ['googlebot', 'googlebotSmartphone'],
duration: 30, // 30 days
minSampleSize: 1000,
metrics: ['impressions', 'clicks', 'ctr']
},
meta_description: {
name: 'Meta Description Length',
type: 'meta_description',
hypothesis: 'Longer meta descriptions (160 chars) increase CTR',
variants: {
control: 'Short description (120 chars)',
variant_a: 'Medium description (140 chars)',
variant_b: 'Long description (160 chars)'
},
duration: 45,
minSampleSize: 1500
},
internal_linking: {
name: 'Internal Link Placement',
type: 'internal_linking',
hypothesis: 'Internal links in first paragraph increase crawl depth',
variants: {
control: 'Links in middle of content',
variant_a: 'Links in first paragraph',
variant_b: 'Links in conclusion'
},
metrics: ['pages_crawled', 'crawl_depth', 'indexation_rate']
}
}
}
}
// Worker integration for experiments
addEventListener('fetch', event => {
event.respondWith(handleExperimentRequest(event.request))
})
async function handleExperimentRequest(request) {
const detector = new BotDetector()
const detection = await detector.detectBot(request)
if (!detection.isBot) {
return fetch(request)
}
const experimentFramework = new SEOExperimentFramework()
const experiments = experimentFramework.getActiveExperiments()
let response = await fetch(request)
let html = await response.text()
// Apply experiments
for (const experiment of experiments) {
const variant = experimentFramework.assignVariant(
experiment.id,
request.url,
detection.botType
)
if (variant) {
const renderer = new DynamicRenderer()
html = await renderer.applyExperimentVariant(
new Response(html, response),
{ id: experiment.id, variant: variant, type: experiment.type }
)
// Track experiment assignment
experimentFramework.trackAssignment(experiment.id, variant, request.url)
}
}
return new Response(html, response)
}
Start implementing advanced bot management today. Begin with basic bot detection and priority-based crawling. Then implement dynamic rendering for critical pages. Gradually add more sophisticated features like traffic shaping and SEO experimentation. Monitor results in both Cloudflare Analytics and Google Search Console. Advanced bot management transforms Google Bot from an uncontrollable variable into a precision SEO tool.